Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Jul 28, 2025

📄 190,985% (1,909.85x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 3.51 seconds 1.83 milliseconds (best of 117 runs)

📝 Explanation and details

Here is an optimized version of the program.

  • The original is O(n²) bubble sort with an unnecessary full second loop each time and can be improved.
  • The built-in sort() is much faster and uses adaptive, stable, and memory-efficient TimSort (O(n log n)).

Comments are preserved.
No function names or return values changed.

This produces exactly the same result as before, but runs dramatically faster for all but the tiniest lists.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 20 Passed
🌀 Generated Regression Tests 53 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
benchmarks/test_benchmark_bubble_sort.py::test_sort2 7.47ms 22.3μs ✅33340%
test_bubble_sort.py::test_sort 878ms 157μs ✅556360%
test_bubble_sort_conditional.py::test_sort 11.6μs 8.08μs ✅43.3%
test_bubble_sort_import.py::test_sort 880ms 157μs ✅558382%
test_bubble_sort_in_class.py::TestSorter.test_sort_in_pytest_class 878ms 160μs ✅545647%
test_bubble_sort_parametrized.py::test_sort_parametrized 534ms 157μs ✅340564%
test_bubble_sort_parametrized_loop.py::test_sort_loop_parametrized 135μs 49.4μs ✅175%
🌀 Generated Regression Tests and Runtime
import random  # used for generating large random lists
import string  # used for string sorting tests
import sys  # used for min/max int tests

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# --- BASIC TEST CASES ---

def test_sorter_empty_list():
    # Test sorting an empty list
    arr = []
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 8.88μs -> 7.88μs (12.7% faster)

def test_sorter_single_element():
    # Test sorting a single-element list
    arr = [42]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.58μs -> 7.88μs (21.7% faster)

def test_sorter_already_sorted():
    # Test sorting an already sorted list
    arr = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.96μs -> 7.96μs (25.1% faster)

def test_sorter_reverse_sorted():
    # Test sorting a reverse-sorted list
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.4μs -> 7.96μs (30.9% faster)

def test_sorter_unsorted_integers():
    # Test sorting a typical unsorted list of integers
    arr = [3, 1, 4, 1, 5, 9, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.9μs -> 8.04μs (35.8% faster)

def test_sorter_with_duplicates():
    # Test sorting a list with duplicate values
    arr = [2, 3, 2, 1, 3, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.5μs -> 7.92μs (32.6% faster)

def test_sorter_negative_numbers():
    # Test sorting a list with negative numbers
    arr = [-3, -1, -2, 0, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.58μs -> 8.25μs (16.2% faster)

def test_sorter_mixed_sign_numbers():
    # Test sorting a list with both positive and negative numbers
    arr = [-10, 0, 5, -3, 8, -2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.2μs -> 7.92μs (28.4% faster)

def test_sorter_floats():
    # Test sorting a list of floats
    arr = [3.1, 2.2, 5.5, 1.0, 4.4]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 12.2μs -> 9.00μs (35.2% faster)

def test_sorter_mixed_ints_and_floats():
    # Test sorting a list with both ints and floats
    arr = [1, 2.2, 3, 0.5, -1, -2.5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.6μs -> 9.29μs (24.7% faster)

def test_sorter_strings():
    # Test sorting a list of strings alphabetically
    arr = ["banana", "apple", "cherry", "date"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.3μs -> 8.38μs (22.9% faster)

def test_sorter_strings_case_sensitive():
    # Test sorting a list of strings with mixed case
    arr = ["Banana", "apple", "Cherry", "date"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.71μs -> 8.25μs (17.7% faster)

# --- EDGE TEST CASES ---

def test_sorter_all_identical():
    # Test sorting a list where all elements are identical
    arr = [7] * 10
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.7μs -> 8.00μs (33.9% faster)

def test_sorter_two_elements_sorted():
    # Test sorting a two-element list that is already sorted
    arr = [1, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 8.58μs -> 7.79μs (10.2% faster)

def test_sorter_two_elements_unsorted():
    # Test sorting a two-element list that is unsorted
    arr = [2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.38μs -> 7.79μs (20.3% faster)

def test_sorter_large_negative_and_positive():
    # Test sorting with very large and very small integers
    arr = [sys.maxsize, -sys.maxsize - 1, 0, 1, -1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.2μs -> 8.42μs (33.7% faster)

def test_sorter_with_none_raises():
    # Test that sorting a list containing None raises a TypeError
    arr = [1, None, 2]
    with pytest.raises(TypeError):
        sorter(arr.copy()) # 45.6μs -> 41.7μs (9.39% faster)

def test_sorter_mixed_types_raises():
    # Test that sorting a list with incompatible types raises a TypeError
    arr = [1, "two", 3]
    with pytest.raises(TypeError):
        sorter(arr.copy()) # 43.2μs -> 41.2μs (4.75% faster)

def test_sorter_immutable_input():
    # Test that the input list is mutated in place (since the function sorts in place)
    arr = [3, 2, 1]
    sorter(arr) # 9.58μs -> 7.92μs (21.0% faster)

def test_sorter_empty_string_list():
    # Test sorting a list of empty strings
    arr = ["", "", ""]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.2μs -> 8.17μs (25.0% faster)

def test_sorter_unicode_strings():
    # Test sorting a list of unicode strings
    arr = ["α", "β", "γ", "δ", "ε"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.7μs -> 9.08μs (28.9% faster)

def test_sorter_special_characters():
    # Test sorting a list with special characters
    arr = ["!", "@", "#", "$", "%"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.9μs -> 8.17μs (33.7% faster)

# --- LARGE SCALE TEST CASES ---

def test_sorter_large_sorted_list():
    # Test sorting a large already sorted list (best case)
    arr = list(range(1000))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 19.8ms -> 35.2μs (56152% faster)

def test_sorter_large_reverse_list():
    # Test sorting a large reverse-sorted list (worst case for bubble sort)
    arr = list(range(999, -1, -1))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 32.9ms -> 35.5μs (92558% faster)

def test_sorter_large_random_list():
    # Test sorting a large random list
    arr = random.sample(range(-10000, -9000), 1000)
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 30.1ms -> 70.1μs (42854% faster)

def test_sorter_large_duplicates():
    # Test sorting a large list with many duplicates
    arr = [random.choice([0, 1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 27.3ms -> 60.4μs (45152% faster)

def test_sorter_large_strings():
    # Test sorting a large list of random strings
    arr = [
        ''.join(random.choices(string.ascii_letters + string.digits, k=5))
        for _ in range(1000)
    ]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 31.7ms -> 100μs (31397% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import random  # used for generating large test cases
import string  # used for string sorting test cases
import sys  # used for edge cases with extreme values

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# -------------------- BASIC TEST CASES --------------------

def test_sorter_basic_sorted():
    # Already sorted list
    arr = [1, 2, 3, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.8μs -> 8.12μs (32.3% faster)

def test_sorter_basic_reverse():
    # Reverse sorted list
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.9μs -> 7.96μs (37.2% faster)

def test_sorter_basic_unsorted():
    # Random unsorted list
    arr = [3, 1, 4, 5, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.6μs -> 7.71μs (37.3% faster)

def test_sorter_basic_duplicates():
    # List with duplicates
    arr = [2, 3, 2, 1, 3]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.6μs -> 7.88μs (34.4% faster)

def test_sorter_basic_single_element():
    # Single element list
    arr = [42]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.58μs -> 8.04μs (19.2% faster)

def test_sorter_basic_two_elements_sorted():
    # Two elements, already sorted
    arr = [1, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.67μs -> 7.83μs (23.4% faster)

def test_sorter_basic_two_elements_unsorted():
    # Two elements, unsorted
    arr = [2, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.0μs -> 7.88μs (27.5% faster)

def test_sorter_basic_negative_numbers():
    # List with negative numbers
    arr = [-3, -1, -2, 0, 2]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.7μs -> 8.12μs (31.3% faster)

def test_sorter_basic_all_equal():
    # All elements are the same
    arr = [7, 7, 7, 7]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.2μs -> 7.88μs (30.2% faster)

# -------------------- EDGE TEST CASES --------------------

def test_sorter_edge_empty():
    # Empty list
    arr = []
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 7.92μs -> 7.71μs (2.71% faster)

def test_sorter_edge_large_negative_and_positive():
    # Large negative and positive numbers
    arr = [sys.maxsize, -sys.maxsize-1, 0, 999, -999]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.9μs -> 8.58μs (38.3% faster)

def test_sorter_edge_floats():
    # List with floats and integers
    arr = [3.2, 1, 2.5, 0, -1.1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 13.8μs -> 9.25μs (49.5% faster)

def test_sorter_edge_strings():
    # List of strings
    arr = ["banana", "apple", "cherry"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.4μs -> 8.33μs (25.0% faster)

def test_sorter_edge_mixed_types_raises():
    # List with mixed types should raise TypeError
    arr = [1, "a", 2]
    with pytest.raises(TypeError):
        sorter(arr.copy()) # 44.3μs -> 41.5μs (6.83% faster)

def test_sorter_edge_already_sorted_with_duplicates():
    # Already sorted with duplicates
    arr = [1, 1, 2, 2, 3, 3]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.6μs -> 7.96μs (33.0% faster)

def test_sorter_edge_large_identical_elements():
    # Large list of identical elements
    arr = [0] * 100
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 155μs -> 10.6μs (1361% faster)

def test_sorter_edge_single_large_value():
    # List with one very large value among small values
    arr = [1, 2, 3, 10**18, 4, 5]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.5μs -> 8.42μs (36.1% faster)

def test_sorter_edge_single_small_value():
    # List with one very small value among large values
    arr = [10**18, 2, 3, 4, 5, 1]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 12.1μs -> 8.58μs (40.8% faster)

def test_sorter_edge_non_ascii_strings():
    # List of non-ASCII strings
    arr = ["éclair", "apple", "zebra", "Álgebra"]
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.6μs -> 8.92μs (29.9% faster)

# -------------------- LARGE SCALE TEST CASES --------------------

def test_sorter_large_sorted():
    # Large already sorted list
    arr = list(range(1000))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 19.6ms -> 35.7μs (54907% faster)

def test_sorter_large_reverse():
    # Large reverse sorted list
    arr = list(range(999, -1, -1))
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 33.0ms -> 35.4μs (93181% faster)

def test_sorter_large_random():
    # Large random list
    arr = list(range(1000))
    random.shuffle(arr)
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 28.9ms -> 66.7μs (43244% faster)

def test_sorter_large_duplicates():
    # Large list with many duplicates
    arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 26.9ms -> 59.0μs (45515% faster)

def test_sorter_large_strings():
    # Large list of random strings
    arr = [''.join(random.choices(string.ascii_letters, k=5)) for _ in range(1000)]
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 32.2ms -> 101μs (31704% faster)

def test_sorter_large_all_same():
    # Large list of all the same value
    arr = [42] * 1000
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 19.6ms -> 33.8μs (57950% faster)

def test_sorter_large_alternating():
    # Large list alternating two values
    arr = [0, 1] * 500
    expected = sorted(arr)
    codeflash_output = sorter(arr.copy()); result = codeflash_output # 23.6ms -> 49.7μs (47308% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-mdnr4tjz and push.

Codeflash

Here is an optimized version of the program.  
- The original is O(n²) bubble sort with an unnecessary full second loop each time and can be improved.
- The built-in `sort()` is much faster and uses adaptive, stable, and memory-efficient TimSort (`O(n log n)`).

Comments are preserved.  
No function names or return values changed.



This produces exactly the same result as before, but runs dramatically faster for all but the tiniest lists.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jul 28, 2025
@codeflash-ai codeflash-ai bot requested a review from aseembits93 July 28, 2025 23:41
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sorter-mdnr4tjz branch July 28, 2025 23:45
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant